US 20090315906A1

a2y Patent Application Publication o) Pub. No.: US 2009/0315906 A1

a9 United States

Keam

43) Pub. Date: Dec. 24, 2009

CACHE ARRANGEMENT FOR GRAPHICAL
APPLICATIONS

(54)

(75) Inventor: Nigel Keam, Redmond, WA (US)
Correspondence Address:
MICROSOFT CORPORATION
ONE MICROSOFT WAY
REDMOND, WA 98052 (US)
(73)

Assignee: MICROSOFT CORPORATION,

Redmond, WA (US)

@
(22)

Appl. No.: 12/141,252

Filed: Jun. 18, 2008

100’\

n 0

Publication Classification

(51) Int.CL

G09G 5/36 (2006.01)
(CZ R VR & R 345/557
(57) ABSTRACT

A cache arrangement for graphical applications is disclosed.
One embodiment comprises receiving a first address having a
first n-bit portion and corresponding to a first pixel, receiving
a second address having a second n-bit portion and corre-
sponding to the first pixel, reversing the order of the second
n-bit portion to form a reversed n-bit portion, and generating
a first cache entry number derived from the first n-bit portion
and the reversed n-bit portion.

| Y ADDRESS 110 |

| HieH Y 122

30

150’-\

TAG 152

CACHE
ENTRY
DATA 154 < NUMBER

‘ h J

COMPARATOR
160

v

Hit/Miss 180

\
CACHED VALUE 170

Patent Application Publication Dec. 24, 2009 Sheet 1 of 3 US 2009/0315906 A1

100’\

n N 0
| Y ADDRESS 110 X ADDRESS 112 | /140
* ________ 1 + ____________________ |

|HieHY 122| LowY 124 | HieHX126 | Low X 128 | !
|

A 4

150"\
CACHE
ENTRY
TAG 152 DATA 154 (ea— NUMBER

v v

COMPARATOR
160

* A\

HIT/Miss 180 CACHED VALUE 170

FIG. 1

Patent Application Publication Dec. 24, 2009 Sheet 2 of 3 US 2009/0315906 A1

200 ’\

210
™.
N
NN
220
| et | 250
T T T 1] d
T 1]
230
246—_| | 240
242\
244 ~——
\4 260
X
7
¥
Z

FIG. 2

Patent Application Publication Dec. 24, 2009 Sheet 3 of 3 US 2009/0315906 A1

300 /\

RECEIVE A FIRST N-BIT ADDRESS CORRESPONDING TO A 310
FIRST PIXEL
RECEIVE A SECOND N-BIT ADDRESS CORRESPONDING TO 320

THE FIRST PIXEL

REVERSE THE ORDER OF AT LEAST A PORTION OF THE

330
SECOND N-BIT ADDRESS TO FORM A REVERSED N-BIT
ADDRESS
4 N\
GENERATE A FIRST PIXEL CACHE ENTRY NUMBER
_— 340

DERIVED FROM THE FIRST N-BIT ADDRESS AND THE
REVERSED N-BIT ADDRESS

FIG. 3

US 2009/0315906 Al

CACHE ARRANGEMENT FOR GRAPHICAL
APPLICATIONS

BACKGROUND

[0001] A data cache reduces average memory access times
by storing local copies of data, for example local copies of
frequently used data from a main memory. A data cache has a
cache entry number, or index, that is associated with a tag. In
some embodiments a tag may be an address, or an index, from
a location in main memory. When a cache stores a local copy
of data from main memory, the data will be associated with
the cache entry number and the address from main memory.
Inthis way, when arequest for a main memory address or data
from a main memory is received, the cache can be scanned for
a corresponding tag and the data can then be accessed locally,
with less latency. Unfortunately, data caches have a limited
amount of memory space and therefore do not store a local
copy of all data from main memory.

[0002] Some applications create data cache management
problems. For example, in a direct mapped cache, main
memory locations are directly mapped to cache locations,
causing cache over-writes and therefore countering the
reduced latency offered by caching locally stored data. This
can be problematic when a direct-mapped cache is used to
store data related to graphical applications, or multiple
dimensional arrays of data, such as a pixel array, a texel array,
etc. When an application attempts to retrieve data from adja-
cent addresses within the array, the cache organization
scheme may re-write a cache entry multiple times, increasing
latency for data retrieval.

[0003] A set-associative caching scheme may be used to
decrease the amount of over-writes for similar cache entry
numbers, unfortunately current set-associative caching
schemes generate a corresponding increase in management
overhead.

SUMMARY

[0004] Accordingly, various embodiments for a cache
arrangement for graphical applications are described below
in the Detailed Description. For example, one embodiment
comprises receiving a first address having a first n-bit portion
and corresponding to a first pixel, receiving a second address
having a second n-bit portion and corresponding to the first
pixel, reversing the order of the second n-bit portion to form
a reversed n-bit portion, and generating a first cache entry
number derived from the first n-bit portion and the reversed
n-bit portion.

[0005] This Summary is provided to introduce concepts in
a simplified form that are further described below in the
Detailed Description. This Summary is not intended to iden-
tify key features or essential features of the claimed subject
matter, nor is it intended to be used to limit the scope of the
claimed subject matter. Furthermore, the claimed subject
matter is not limited to implementations that solve any or all
disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows an embodiment apparatus to provide
cache addresses to organize a data cache.

[0007] FIG. 2 shows an array of pixels including multiple
rectangular shapes that have a locality of reference in a cache.

Dec. 24, 2009

[0008] FIG. 3 shows a process flow depicting an embodi-
ment cache arrangement method for a graphical application.

DETAILED DESCRIPTION

[0009] FIG. 1 shows an embodiment system 100 to gener-
ate cache entry numbers for data cache 150. System 100 will
be described in reference to data cache 150, but the present
approach is also applicable to caches that may store multi-
dimensional addresses, including a CPU cache, and a graph-
ics processor cache, an image processing system such as a
vision system, etc. Additionally, in the present example a
cache entry number is used to refer to a cache entry location,
but in other cases a cache entry number may also be referred
to as a cache address, a cache index, etc.

[0010] Embodiments described herein relate to graphical
applications with pixel or texel graphics arrays, but other
embodiments are not so limited. In some embodiments using
graphics processors (GPUs) or other image analysis, the
image data may exhibit a locality of reference where a num-
ber of pixels in a small region may be accessed near the same
time while the precise nature of their locality is difficult to
predict. For example, a tall narrow region of pixels may be
accessed in one instance and a wide yet short region of pixels
might be accessed in another instance.

[0011] In yet another embodiment, the approaches
described herein may be applied to a CPU cache, wherein it
could enhance the performance of the CPU when using
graphics applications without necessarily having an adverse
effect on the performance of the cache for non-graphical
applications. Additionally, the techniques described herein
may be applied to a direct mapped cache, a set associative
cache, combinations of caches, or other suitable caching
architectures.

[0012] Referring to the example illustrated in FIG. 1, sys-
tem 100 generates cache entry numbers using the portions of
X and Y addresses of a pixel array that are more likely to
change in subsequent operations. In this way, system 100 can
rearrange at least a portion of one of the addresses and per-
form a bitwise operation with a portion of the other address to
distribute the portions of each address more likely to change
over an increased number of cache entries, in turn reducing
accesses to main memory based on cache entry reuse.
[0013] System 100 illustrates an approach that performs an
exclusive OR operation between a portion of a first address
and a reversed portion of a second address to generate a cache
entry number, but other embodiments are not so limited. For
example, other bitwise operations may be used, such as an
XNOR, or other suitable bitwise operation, to combine mul-
tiple addresses to generate cache entry numbers that reduce
cache entry reuse according to the principles of this disclo-
sure. In alternate embodiments, a mathematical operation
may be used. For example, an ADD operation such as by a
full-adder, a ripple adder, etc., may add the binary numbers to
create cache entry numbers. Other mathematical operations
may be used according to the principles in this disclosure.
[0014] Additionally, system 100 is directed at a 2-dimen-
sional example, but other embodiments are not so limited.
Further, system 100 illustrates an approach that reverses a
portion of one address, but other embodiments are not so
limited. For example, an approach may reorder a portion of
one address so that when two addresses are combined, the
portion of one address that would more frequently change is
not combined with the portion of the other address that would
more frequently change. Therefore, cache entry numbers may

US 2009/0315906 Al

be generated in a manner to reduce cache entry reuse by
distributing cache entries that are more expected to change
over an increased range of cache entries.

[0015] In a detailed example, system 100 includes a Y
address 110 including more significant bits referred to as
High'Y 122 and less significant bits referred to as LowY 124,
and the X address 112 including more significant bits referred
to as High X 126 and less significant bits referred to as Low X
128, as illustrated in FIG. 1.

[0016] Insystem 100, LowY 124 and Low X 128 are each
depicted as being the bottom n-bits of a corresponding Y
address 110 and X address 112; however, other embodiments
are not so limited. For example, for a cache entry number
having a known bit depth, the bits for Low Y 124 and Low X
128 may have different bit depths and yet still be combinable
to form a specific cache entry number according to the prin-
ciples of this disclosure.

[0017] Dashed line 140 illustrates an example bitwise com-
bination of portions of the Y address 110 and the X address
112. In particular, LowY 124 may comprise the bottom n bits
of 'y address 110 and may have their order reversed. Then,
Low X 128 comprising the less significant bits of the X
address 112 are combined with the reversed Low Y 124 in
combiner 130.

[0018] For example, an embodiment apparatus may com-
prise a first register to receive a first address having a first n-bit
portion as depicted by Y address 110 and a second register to
receive a second address having a second n-bit portion as
depicted by X address 112. The apparatus may further com-
prise an instruction sequence to reverse the order of the sec-
ond n-bit portion to form a reversed n-bit portion, to generate
a cache entry number derived from an exclusive OR operation
between the first n-bit portion and the reversed n-bit portion,
and to use the cache entry number to store data in a cache.

[0019] Insystem 100, the combiner 130 performs an exclu-
sive OR operation between the bits of reversed Low Y 124 and
Low X 128 to generate a cache entry number; but other
embodiments are not so limited. For example, combiner 130
may perform a bitwise operation other than an exclusive OR
to combine portions ofthe X and Y addresses to create a cache
entry number, or may perform multiple bitwise operations to
create a cache entry number, etc. In some embodiments, a
mathematical operation may be used in place of the bitwise
operation to generate a cache entry number according to the
principles in this disclosure. The resulting cache entry num-
ber than may be used to access data cache 150.

[0020] Inaread operation, a comparator 160 may compare
atag 152 corresponding to the generated cache entry number
with a number containing the High Y 122, Low Y 124, and
High X 126, to determine a cache hit or cache miss 180 and
provide a cache value 170 corresponding to data 154 in
response to a cache hit. However, the cache arrangement
techniques described herein are not so limited and may be
used in a read operation or within a write operation.

[0021] FIG. 2 shows an array 200 of pixels including mul-
tiple representative rectangular portions of the array that may
advantageously be used in a cache arrangement according to
the techniques described herein. The examples described
with reference to array 200 include rectangular areas, but
areas having other shapes may also exhibit locality of refer-
ence characteristics similar to rectangles and therefore benefit
from cache arrangements and cache entry number techniques
according to the principles described herein.

Dec. 24, 2009

[0022] In some embodiments, a cache arrangement tech-
nique may provide cache entry numbers for any 2"m by
2"(n-m) rectangle within an array, wherein m may range from
0 to n. For example, array 200 is depicted with multiple
rectangular areas including a 32 pixel wide by 1 pixel high
rectangle 210, a 16 pixel wide by 2 pixel high rectangle 220,
an 8 pixel wide by 4 pixel tall rectangle 230, a 4 pixel wide by
8 pixel tall rectangle 240, a 2 pixel wide by 16 pixel tall
rectangle 250, and a 1 pixel wide by 32 pixel high rectangle
260.

[0023] Array 200 includes a horizontal X axis and a vertical
Y axis, as arranged in FIG. 2. The present example rectangles
each include 32 pixels, wherein each pixel has an X address
and a'Y address within the array. Therefore, in the present
example each of these rectangles may be represented in a
cache having 5-bit cache entry numbers, but other embodi-
ments are not so limited. Some embodiments may include
other data arrangements, for example a 3-dimensional array
may also include a Z axis that is orthogonal to both the X axis
and the Y axis.

[0024] Ina2-dimensional example with a 5-bit cache entry
number, the lower left corner of array 200 may be an origin for
all X andY addresses in array 200. Further, array 200 includes
pixel 242, pixel 244 and pixel 246, all three within rectangle
240. Considering the lower left corner of array 200 as the
origin, pixel 242 will have an X address and aY address ofthe
decimal value 4, or as represented in binary each as the
address 00100 as a 5-bit cache entry number.

[0025] Furthermore, pixel 244 has an X address of 00110
and aY address of 00100, and pixel 246 has an X address of
00100 and a'Y address of 00110. Therefore, if the X address
andY address are directly combined with a bitwise exclusive
OR operation to generate a cache entry number for each pixel,
then the cache entry number for pixel 242 would be 00000,
the cache entry number for pixel 244 would be 00010 and the
cache entry number for pixel 246 would be 00010. In this
case, the cache entry number for pixel 244 and for pixel 246
would be the same, thus resulting in a reuse of that cache line
and at least one memory access to main memory.

[0026] Continuing with the current example, if the n-bit
portion used as the 5-bit cache entry number is the X address
and the Y address listed above, then if the Y address is
reversed for pixel 244 it would be 00100 while the reversed Y
address for pixel 246 would be 01100. Due to this change, the
exclusive OR operation would result in different values for
pixel 244 and pixel 246, that is, pixel 244 would have a cache
entry number of 00010, pixel 246 would have a cache entry
number 0f 01000, and pixel 242 would still have a cache entry
number of 00000. In this way, all three pixels would have
different cache entry numbers according to the approach
described with reference to FIG. 1.

[0027] Additionally, representative areas need not be
placed at particular locations in an array to benefit from the
techniques herein due to the looping principle of binary num-
bers. For example, for any range of binary numbers, each
binary representation within a specific bit-width is different.
In this way, a range of cache entry numbers may be generated
independent of adjacent X addresses or Y addresses of a
pixels in the array so long as the range of pixels fits within the
number of cache entries. In limited cases where a cache entry
may be reused, the approaches described herein still improve
cache performance by reducing cache entry reuse in a portion
of memory accesses.

US 2009/0315906 Al

[0028] FIG. 3 shows a process flow depicting an embodi-
ment cache arrangement method 300 for a graphical applica-
tion. First, as indicated in block 310, method 300 comprises
receiving a first address having a first n-bit portion and cor-
responding to a first pixel. Method 300 is described with
reference to a pixel within an array of pixels, but other
embodiments are not so limited. For example, other graphical
elements such as texels may be used instead of pixels, or other
arrays of data that exhibit locality of reference characteristics
similar to graphics arrays may include other data elements
that may be used in place of pixels in method 300.

[0029] Method 300 also comprises receiving a second
address having a second n-bit portion and corresponding to
the first pixel, as indicated in block 320. Similarly, an embodi-
ment may receive the n-bit portion without the full first
address or full second address. Additionally, the first n-bit
portion and the second n-bit portion may be different sizes.
For example, in one embodiment the first n-bit portion may be
n-m bits wide and the second n-bit portion may be m bits
wide. Other embodiments may combine a portion of two
addresses to generate cache entry numbers to increase cache
efficiency according to the principles herein.

[0030] Next, method 300 comprises reversing the order of
the second n-bit portion to form a reversed n-bit portion, as
indicated at block 330. Additionally, some embodiments may
reverse the order of the first n-bit portion. For example, if the
first n-bit portion corresponds to X address and the second
n-bit portion corresponds to a Y address, an cache arrange-
ment approach would benefit from the principles herein irre-
spective of if the X address portion or the Y address portion
was re-ordered.

[0031] Some embodiments may reorder the one n-bit por-
tion in a manner other than reversing them. For example, the
second n-bits may be ordered inside-out, where the low order
bits are placed in the middle of the second n-bit portion. This
approach may be useful for arrays with higher dimensions
than two. For example, in a 3 dimensional graphics applica-
tion with an X, Y, and Z address for each picture or texture
element, a cache arrangement may benefit by distributing the
more likely to change bits from each of the X, Y, and Z
addresses to different portions of a cache entry number.
[0032] Method 300 then comprises and generating a first
pixel cache entry number derived from the first n-bit portion
and the reversed n-bit portion, as shown in block 340. For
example, the first n-bit portion may be the low order n-bit
portion of a first address, such as an X address of a pixel in an
array of pixels, and the second n-bit portion may be the low
order n-bit portion of a second address, such as aY address of
the same pixel.

[0033] Insomeembodiments, generating a first pixel cache
entry number includes performing a bitwise or a mathemati-
cal operation between the low order n-bit portion of the first
address and the reversed low order n-bit portion of the second
address. In one specific example, generating a first pixel
cache entry number includes performing an exclusive OR
operation between a low order n-bit portion of the first
address and a reversed low order n-bit portion of the second
address, but other embodiments are not so limited. For
example, other mathematical operations may be used to com-
bine multiple addresses to generate cache entry numbers that
reduce cache entry reuse according to the principles of this
disclosure.

[0034] Additionally, some embodiments may generate
multiple cache entry numbers according to multiple pixels,

Dec. 24, 2009

texels, or other arrays of data. For example, method 300 may
further comprise generating a second pixel cache entry num-
ber for a second pixel derived from a low order n-bit portion
of a third address and a reversed low order n-bit portion of a
fourth address, wherein the second pixel cache entry number
is a different number than the first pixel cache entry number.
[0035] Some embodiments may use different groups of
n-bits to generate a cache entry. For example in method 300,
reversing the order of a second n-bit portion to form a
reversed n-bit portion may further include reversing the order
of'the n+1 to the 2n bits of an address to form a reversed n-bit
portion, but other embodiments are not so limited. Some
embodiments may generate cache entry numbers from three
unique addresses, such as from a 3-dimensional array. For
example, the present method may further include generating
an intermediate pixel cache entry number derived from the
first n-bit portion and the reversed n-bit portion, and generat-
ing a first pixel cache entry number by performing an exclu-
sive OR operation with an inside-out next n bits of an address.
For example, the inside-out next n-bit portion may be a por-
tion of a Z address, thus creating a cache arrangement
approach for a 3-dimensional array.

[0036] In one example 3-dimensional array method, con-
sider 10 bits for each portion of an address, that is, for each n.
In this case, a first n-bit portion may be the bits {9, 8, 7, 6, 5,
4,3,2,1, 0} of an address, and may be exclusive OR’d with
the bits {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} of an address.
Then, the number resulting from this first exclusive OR
operation may be exclusive OR’d with bits {29, 27,25,23, 21,
20, 22, 24, 26, 28} of an address. In this example the second
group of bits is in reverse order and the third group of bits is
in an inside-out order, but other embodiments are not so
limited. For example, n-bit portions or full addresses may be
arranged differently and different operations may be per-
formed between the bits to generate a range of cache entry
numbers according to the principles of this disclosure.
[0037] While a hardware implementation may generate
cache entry numbers relatively quickly, it will be appreciated
that the embodiments described herein may be implemented,
for example, via computer-executable instructions or code,
such as programs, stored on a computer-readable medium
comprising instructions executable by a computing device to
enable cache arrangement for graphical applications. Gener-
ally, programs include routines, objects, components, data
structures, and the like that perform particular tasks or imple-
ment particular abstract data types. As used herein, the term
“program” may connote a single program or multiple pro-
grams acting in concert, and may be used to denote applica-
tions, services, or any other type or class of program. Like-
wise, the terms “computer” and “computing device” as used
herein include any device that electronically executes one or
more programs, including, but not limited to personal com-
puters, surface computers, servers, laptop computers, hand-
held devices, cellular phones, and other suitable micropro-
cessor-based programmable consumer electronics and/or
appliances.

[0038] It will further be understood that the configurations
and/or approaches described herein are exemplary in nature,
and that these specific embodiments or examples are not to be
considered in a limiting sense, because numerous variations
are possible. The specific routines or methods described
herein may represent one or more of any number of process-
ing strategies. As such, various acts illustrated may be per-
formed in the sequence illustrated, in other sequences, in

US 2009/0315906 Al

parallel, or in some cases omitted. [.ikewise, the order of any
of the above-described processes is not necessarily required
to achieve the features and/or results of the embodiments
described herein, but is provided for ease of illustration and
description. The subject matter of the present disclosure
includes all novel and nonobvious combinations and subcom-
binations of the various processes, systems and configura-
tions, and other features, functions, acts, and/or properties
disclosed herein, as well as any and all equivalents thereof.

1. A cache arrangement method for a graphical application,
the method comprising:

receiving a first address having a first n-bit portion and

corresponding to a first pixel;

receiving a second address having a second n-bit portion

and corresponding to the first pixel;

reversing the order of the second n-bit portion to form a

reversed n-bit portion; and

generating a first cache entry number derived from the first

n-bit portion and the reversed n-bit portion.

2. The cache arrangement method of claim 1, wherein the
first n-bit portion is the low order n-bit portion of the first
address and the second n-bit portion is the low order n-bit
portion of the second address.

3. The method of claim 1, wherein generating a first cache
entry number includes performing an exclusive OR operation
between a low order n-bit portion of the first address and a
reversed low order n-bit portion of the second address.

4. The method of claim 1, wherein the first address is an X
address in an array of pixels, and the second address is aY
address in the array of pixels.

5. The method of claim 1, further comprising:

generating a second cache entry number for a second pixel

derived from a low order n-bit portion of a third address
and a reversed low order n-bit portion of a fourth
address, wherein the second cache entry number is a
different number than the first cache entry number.

6. The method of claim 1, wherein generating a first cache
entry number includes performing a bitwise operation
between the low order n-bit portion of the first address and the
reversed low order n-bit portion of the second address.

7. The method of claim 1, wherein the cache arrangement
method is used for a set associative cache.

8. The method of claim 1, wherein reversing the order of
the second n-bit portion to form a reversed n-bit portion
includes reversing the order of the n+1 to the 2n bits of an
address to form a reversed n-bit portion.

9. The method of claim 8, further comprising:

generating an intermediate cache entry number derived

from the first n-bit portion and the reversed n-bit portion;
and

generating a first cache entry number by performing an

exclusive OR operation with an inside-out next n bits of
an address.

10. A computer-readable medium comprising instructions
executable by a computing device to enable cache arrange-
ment for graphical applications, the instructions being
executable to perform a method comprising:

receiving a first address having a first n-bit portion and

corresponding to a first pixel;

Dec. 24, 2009

receiving a second address having a second n-bit portion

and corresponding to the first pixel;

reversing the order of the second n-bit portion to form a

reversed n-bit portion; and

generating a first cache entry number derived from the first

n-bit portion and the reversed n-bit portion.

11. The computer-readable medium of claim 10, wherein
the first n-bit portion is the low order n-bit portion of the first
address and the second n-bit portion is the low order n-bit
portion of the second address.

12. The computer-readable medium of claim 10, wherein
generating a first cache entry number includes performing an
exclusive OR operation between a low order n-bit portion of
the first address and a reversed low order n-bit portion of the
second address.

13. The computer-readable medium of claim 10, wherein
the first address is an X address in an array of pixels, and the
second address is a Y address in the array of pixels.

14. The computer-readable medium of claim 10, further
comprising instructions for generating a second cache entry
number for a second pixel derived from a low order n-bit
portion of a third address and a reversed low order n-bit
portion of a fourth address, wherein the second cache entry
number is a different number than the first cache entry num-
ber.

15. The computer-readable medium of claim 10, wherein
generating a first cache entry number includes performing a
bitwise operation between the low order n-bit portion of the
first address and the reversed low order n-bit portion of the
second address.

16. The computer-readable medium of claim 10, wherein
the cache arrangement method is used for a set associative
cache.

17. The computer-readable medium of claim 10, wherein
reversing the order of the second n-bit portion to form a
reversed n-bit portion includes reversing the order of the n+1
to the 2n bits of an address to form a reversed n-bit portion.

18. The computer-readable medium of claim 17, further
comprising instructions for:

generating an intermediate cache entry number derived

from the first n-bit portion and the reversed n-bit portion;
and

generating a first cache entry number by performing an

exclusive OR operation with an inside-out next n bits of
an address.

19. The computer-readable medium of claim 18, wherein
the inside-out next n-bit portion is a portion of a Z address.

20. An apparatus comprising:

a first register to receive a first address having a first n-bit

portion;

a second register to receive a second address having a

second n-bit portion; and

a combiner to:

reverse the order of the second n-bit portion to form a
reversed n-bit portion;

generate a cache entry number derived from an exclusive
OR operation between the first n-bit portion and the
reversed n-bit portion; and

use the cache entry number to store data in a cache.

sk sk sk sk sk

