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Tensor linear Laplacian discrimination for feature extraction
is disclosed. One embodiment comprises generating a con-
textual distance based sample weight and class weight, cal-
culating a within-class scatter using the at least one sample
weight and a between-class scatter for multiple classes of data
samples in a sample set using the class weight, performing a
mode-k matrix unfolding on scatters and generating at least
one orthogonal projection matrix.
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TENSOR LINEAR LAPLACIAN
DISCRIMINATION FOR FEATURE
EXTRACTION

BACKGROUND

Discriminant feature extraction is an important topic in
pattern recognition and classification. Current approaches
used for linear discriminant feature extraction include Prin-
cipal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA). Applications for PCA and LDA include
pattern recognition and computer vision. These methods use
a vector-based representation and compute scatters in a
Euclidean metric, i.e., an assumption is made that the sample
space is Euclidean, where an example metric is a function that
computes a distance or similarities between two points in a
sample space.

Despite the utility of these subspace learning algorithms,
the reliance on a Fuclidean assumption of a data space when
computing a distance between samples has drawbacks,
including the potential of a singularity in a within-class scat-
ter matrix, limited available projection directions, and a high
computational cost. Additionally, these subspace learning
algorithms are vector-based and arrange input data in a vector
form regardless of an inherent correlation among different
dimensions in the data.

In one nonlinear approach, Linear Laplacian Discrimina-
tion (LLD), weights are introduced to scatter matrices to
overcome the FEuclidean assumption, however, the weights
are defined as a function of distance and therefore still use an
a priori assumption on a metric of the sample space.

SUMMARY

Accordingly, various embodiments for tensor linear Lapla-
cian discrimination (TLLD) for feature extraction are
described below in the Detailed Description. For example,
one embodiment comprises generating a contextual distance
based sample weight and class weight, calculating a within-
class scatter using the at least one sample weight and a
between-class scatter for multiple classes of data samples ina
sample set using the class weight, performing a mode-k
matrix unfolding on scatters and generating at least one
orthogonal projection matrix.

This Summary is provided to introduce concepts in a sim-
plified form that are further described below in the Detailed
Description. This Summary is not intended to identify key
features or essential features of the claimed subject matter,
nor is it intended to be used to limit the scope of the claimed
subject matter. Furthermore, the claimed subject matter is not
limited to implementations that solve any or all disadvantages
noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of an embodiment of a tensor
based feature extraction system.

FIG. 2 shows a process flow depicting an embodiment of a
method for tensor based feature extraction for pattern recog-
nition and classification.

FIG. 3 shows a visualization of a multiplication between a
tensor and a set of matrices.

FIG. 4 shows an illustration of an unfolding of a tensor into
matrices.

DETAILED DESCRIPTION

FIG. 1 shows an example system 100 for extracting fea-
tures from tensor based data. A tensor-based representation
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2

provides a discriminant feature extraction approach that may
function independent of a metric used in a sample space. A
tensor-based approach may operate without unfolding data or
features into vectors, for example, one example tensor-based
approach may use mode-k unfolding to unfold the tensor-
based data into matrices. Additionally, a tensor based
approach may operate on high-dimensional data such as ten-
sor based data, and on low-dimensional data, for example if
features in the data is high-dimensional, such as in face rec-
ognition applications, remote sensing applications, feature
extraction of astronomy data, etc. Additionally, tensor-based
algorithms can overcome several drawbacks of vector-based
algorithms, like singularity of within-class scatter matrices,
limited available projection directions and high computa-
tional costs.

In example system 100, computing device 110 includes an
input, a memory 120, and a processor 115 in communication
with the input and memory 120 and is configured to generate
projection matrices 190. Computing device 110 further
includes a computer program 130, and a weight generator
module 140 to receive at least one data sample 107 from a set
of'data samples 105, and generate a sample weight 142 based
on a contextual distance for each of the plurality of data
samples. Additionally, weight generator module 140 may
generate a class weight 144 based on a contextual distance for
a first class of data samples, as will be described in the
following description in more detail.

Computing device 110 may also include a scatter module
160 in communication with the weight generator module 140,
the scatter module 160 being configured to receive the at least
one sample weight 142 and a class weight 144, and then
calculate a within-class scatter 162 using the at least one
sample weight 142, and to calculate a between-class scatter
164 for multiple classes of data samples using the class
weight 144.

Computing device 110 may also have an unfolding module
150 coupled with the weight generator module 140 and the
scatter module 160 and generate one or more scatter matrices
155. The unfolding module 150 is configured to perform a
mode-k matrix unfolding 152 on the within-class scatter 162
to generate a mode-k within-class scatter matrix. The unfold-
ing module 150 is also configured to perform a mode-k matrix
unfolding on the between-class scatter 164 to generate a
mode-k between-class scatter matrix.

A projection matrix module 170 may also be configured
with the weight generator module 140, the unfolding module
150, and the scatter module 160, in computing device 110.
The projection matrix module 170 may be used to generate at
least one orthogonal projection matrix 172 using the mode-k
within-class scatter matrix and the mode-k between-class
scatter matrix, as described in the following description.

Some embodiments may use a Tensor Linear Laplacian
Discrimination (TLLD) method for non-linear feature extrac-
tion from tensor data. TLLD is a non-linear feature extraction
technique utilizing the tensor nature of data, is relatively
independent on any metric assumptions of a subject sample
space, and improves parameter tuning resolution. In follow-
ing paragraphs, definitions of some tensor operations are
provided and an embodiment formulation of TLLD is then
described.

Tensors have some features that may be applied favorably
to feature extraction. FIG. 3 illustrates a visualization 300 of
the equation B=Ax,V,x,V,x;V; for order-3 tensors AE
R™Xm2%m and BER™ ™23, A mode-k matrix unfolding of
A is denoted by A(,()ER””"‘(””‘+1 S - where the
element A, .. .1, of A appears at an i,-th row and an u,-th
column of A, in which:
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g = G — Dmgamyrs o mpmumy ..o my_y +
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An illustration of an order-3 tensor’s matrix unfolding 400
is shown in FIG. 4. And the k-mode product in tensor notation
B=Ax,V can be expressed in terms of matrix unfolding:
Buy=VAg.

A TLLD discriminative feature extraction approach oper-
ates without unfolding tensors into vectors, and reduces
within-class variance and increases between-class variance of
low dimensional features after projections. In one example,
let the samples in an order-n tensor representation be X,,
i=1,2, . . . )N, where N is the number of samples. If s, is
assigned as the class label of X, N is a number of samples in
an s™ class, and the total number of classes is ¢, group of
orthogonal projection matrices U,ER™ ™ m',<m,), k=1,
2, ...,n, may be determined wherein projected low dimen-
sional tensors

Y=X U U7 U T =12, N 1)

have minimal with-class variance and maximal between-
class variance.

Therefore, a within-class scatter may be calculated accord-
ing to following formula:

@

a= Z > owly -7

=1 X;EClass s

where

Pen Yo
S X;eClass s

denotes a centroid of the s™ projected class, and w, is the
weight for the i” sample. Similarly, a between-class scatter
may be defined as:

o 3
B= Y WNIT =TI,

s=1

where w* is the weight for the s class. Some example
approaches to calculate w, and w* will be presented below.
Next, orthogonal projection matrices U,, such that o is mini-
mized and f} is maximized are calculated. One approach may
use Fisher’s criterion, where

B (C)]
max —.
n @

ar
gUI,Uz, 7

However, it is non-trivial to solve equation (4) for U, (i=1,
2, ... ,n) at the same time. Some embodiments may use
iterative methods to solve equation (4), for example o and
may be reformulated using mode-k unfolding, according to
the following formula:
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Y e ®
a= Y willt; =¥
i=1

s s T
Wi”’[(yi -y Yoo (Yi — I )(k)]

-

witr[UF(Z = Z)(Zs = 2 Vs ]

= tr{ ur Uy }

where Z=Xx, U, ", U7 .. % U D U T x, U5
and (Z,-Z%) 4, may be a mode-k matrix unfolding of Z,-Z%, in
which Z* is a centroid of a set {Z,/s~s}.

-

N
> w2 = Z(Z =2

i=1

Furthermore, § may be mode-k unfolded as follows:

S ©)
B= whNIT =TI’

s=1

= Z WNtr[(V° = Py (7" = V]

s=1

= Z W (UL Z = 2),(Z° - 20 U]
s=1

= zr{UkT Uk}

where 7 is the centroid of all Z,’s.

SIWNGZ = D@ - D

s=1

In this way, a within-class scatter and a between-class
scatter may be generated where:

a=r(U;"S, 0, and p=r (U 'S, Uy, M

where the formula

N
—s: e T
S&“ :ZWI(ZI —ZS‘)(/()(Z; —ZS‘)(/()

i=1

provides the mode-k within-class scatter matrix and

59 = Y WN(Z - D@ - Dy

s=1

is the mode-k between class scatter matrix.

Then, U, may be solved successively in the following equa-
tion,

B mulsPu) ®)

argmax — = —————
U@ o{ufsPu)

by fixing the rest U,’s to prepare S, and S, %, and repeating
this procedure until convergence.
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Insome embodiments, weights w; and w* may be generated
in the following forms:

42X, Q) ©
— ), i=1,2,...

w = exp(—

where d(-,") is some distance, t is the time variable, and
Q~{X,Is=s} and Q={X li=1,2, . . . N} are the sets of an 5™
class and all samples, respectively.

In this way, weights may be defined based on the structure
of data, rather than on a Euclidean distance between data
samples. In one embodiment, a contextual distance may be
used and the weights calculated based on this contextual
distance. Contextual distance may be defined on a contextual
set X of nearest neighbors of a sample x. In this way, contex-
tual distance is related to the contribution of the samples to a
structural integrity of the contextual set, which may be
depicted by a structural descriptor f, which may be scalar or
vector valued, as examples. As a descriptor f(X) is an intrinsic
structural characterization of the set X, if x complies with the
structure of X, then removing x from X will have limited
effect on overall structure. In contrast, if x is an outlier or a
noise sample, then removing x from X will likely change the
structure significantly. In this way, the contribution of X to the
structure of X may be measured by

OfAX)- X x})
Therefore, a distance from x to X may be defined as:
Al X=A=-AX D) an

Therefore, the weights in equation (9) may be defined
according to:

10)

ARG )FIRQ)-AQHXD,

d(Q,Q)=Q)- AL, 12

However, to utilize contextual distance based weights, an
appropriate structural descriptor may be used. Therefore, a
centroid descriptor may be defined as

1
f= @Zx,

xeQ)

where QI is the cardinality of Q. Therefore, a coding length
descriptor may be f{€2)=L(Q2), where L.(Q2) is the minimal
number of bits to encode data in Q, up to a tolerable distortion
€, where:

N+m m (13)

Ly = 2ZIN

772]
82

where X=[X,,X,, . . . ,X5] 1s the data matrix of samples in Q
with each sample represented by an m-dimensional vector, X
is the mean of the samples, and X=X-xe’, e=(1,1, ... ,1)".

Unfortunately, these two descriptors are not particularly
suitable for a TLLD approach due to the centroid descriptor
inherently assuming a FEuclidean sample space while a cur-
rent formulation of coding length is vector-based. Therefore,
to match the tensor nature of TLLD, a tensor coding length
may be generated.

logzdet(l + XXT) + glogz(l +
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To generate a tensor coding length, each tensor is devel-
oped to a vector and then a mode-k coding length is computed
for the set of these vectors:

L(k)()():L({(Xl)(k)a(Xz)(k)a cee >(XN)(k)>}) (14)
where X={X X,, ... . X} and (X)), is the mode-k unfold-
ing of X,. Then, a tensor coding length of X may be defined as
the following vector:

L(X):[L(l)(X)L(z)(X)a s 7L(n)(X)]T' (15)

An example of a tensor coding length may be computed by
using the following empirically chosen tolerable distortion in
equation (13):

(g

"
N3TT my
k=1

&

Now the parameter t in equation (9) may be determined. In
an LLD approach, this parameter may be difficult to tune as its
value may vary significantly for different applications. How-
ever, in a TLLD approach as described herein, t can be
resealed as: t=t'o,, for w, and t=t'oc, for w* , respectively,
where

1Y 1<
— 20X, = _ 2
oy = N él d*(X;, ;) and 0 = N él Nod* (£, ),

and wherein an example t' may be around 1. This treatment
easily simplifies the parameter tuning for t. An embodiment
of a TLLD method will next be described with reference to
FIG. 2.

FIG. 2 shows a process flow depicting one embodiment of
a method 200 for tensor based feature extraction. First, as
indicated in block 210, method 200 comprises generating at
least one sample weight based on a contextual distance for
each of a plurality of data samples in a sample set and gener-
ating a class weight based on a contextual distance for a first
class of data samples in a sample set.

Method 200 also comprises calculating a within-class scat-
ter for a class of data samples in a sample set, wherein the
within-class scatter is calculated using the at least one sample
weight from block 210, and calculating a between-class scat-
ter for multiple classes of data samples using the class weight
from block 210, as indicated in block 220.

Next, method 200 comprises performing a mode-k matrix
unfolding on the within-class scatter to generate a mode-k
within-class scatter matrix, and also performing a mode-k
matrix unfolding on the between-class scatter to generate a
mode-k between-class scatter matrix, as indicated in block
230.

Next, in block 240, method 200 comprises generating at
least one orthogonal projection matrix using the mode-k
within-class scatter matrix and the mode-k between-class
scatter matrix. In some embodiments, method 200 further
comprises generating a tensor coding length for each of the
tensor based data samples.

It will be appreciated that the embodiments described
herein may be implemented, for example, via computer-ex-
ecutable instructions or code, such as programs, stored on a
computer-readable storage medium and executed by a com-
puting device. Generally, programs include routines, objects,
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components, data structures, and the like that perform par-
ticular tasks or implement particular abstract data types. As
used herein, the term “program” may connote a single pro-
gram or multiple programs acting in concert, and may be used
to denote applications, services, or any other type or class of
program. Likewise, the terms “computer” and “computing
device” as used herein include any device that electronically
executes one or more programs, including, but not limited to,
personal computers, servers, laptop computers, hand-held
devices, cellular phones, microprocessor-based program-
mable consumer electronics and/or appliances, and other
computer image processing devices.

It will further be understood that the configurations and/or
approaches described herein are exemplary in nature, and that
these specific embodiments or examples are not to be consid-
ered in a limiting sense, because numerous variations are
possible. The specific routines or methods described herein
may represent one or more of any number of processing
strategies. As such, various acts illustrated may be performed
in the sequence illustrated, in other sequences, in parallel, or
in some cases omitted. Likewise, the order of any of the
above-described processes is not necessarily required to
achieve the features and/or results of the embodiments
described herein, but is provided for ease of illustration and
description.

The subject matter of the present disclosure includes all
novel and nonobvious combinations and subcombinations of
the various processes, systems and configurations, and other
features, functions, acts, and/or properties disclosed herein,
as well as any and all equivalents thereof.

The invention claimed is:

1. A method stored in memory and executed via a processor
of a computing device for extracting discriminant features
from tensor based data samples, the method comprising:

receiving a sample set including a plurality of data

samples;

generating at least one sample weight based on a contextual

distance for each of a plurality of data samples in the
sample set;
generating a class weight based on a contextual distance for
a first class of data samples in the sample set;

calculating a within-class scatter for a class of data samples
in the sample set, the within-class scatter calculated
using the at least one sample weight;

calculating a between-class scatter for multiple classes of

data samples in the sample set, the between-class scatter
calculated using the class weight;
performing a mode-k matrix unfolding on the within-class
scatter to generate a mode-k within-class scatter matrix;

performing a mode-k matrix unfolding on the between-
class scatter to generate a mode-k between-class scatter
matrix;

generating at least one orthogonal projection matrix using

the mode-k within-class scatter matrix and the mode-k
between-class scatter matrix; and

outputting the at least one orthogonal projection matrix.

2. The method of claim 1, wherein the contextual distance
for each of a plurality of samples in the sample set is calcu-
lated according to a formula:

A Q)=ANQ)-AQNL -

3. The method of claim 2, wherein generating at least one
sample weight based on a contextual distance for each of a
plurality of samples in the sample set further comprises gen-
erating a sample weight w, using a formula:
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(X, nx;)]

w; = exp(— .

4. The method of claim 3, wherein calculating a within-
class scatter for a class of tensor based data samples in the
sample set and calculated using at least one sample weight w,
further comprises calculating a within-class scatter o using a
formula:

c

w=) >, wiv-YI.

s=1 X;eClass s

5. The method of claim 1, wherein the contextual distance
for a first class in the sample set is calculated according to a
formula:

dQ,QIR)-AQLRQ)|

6. The method of claim 5, wherein generating a class
weight based on a contextual distance for a first class in the
sample set further comprises generating a class weight w*
using a formula:

w' = exp(— M]

7. The method of claim 6, wherein calculating a between-
class scatter for a class of tensor based data samples in the
sample set and calculated using a class weight w* further
comprises calculating a between-class scatter 5 using a for-
mula:

B=) wNIF =TI

s=1

8. The method of claim 1, further comprising generating a
tensor coding length for each of the tensor based data
samples.

9. A system for extracting discriminant features from ten-
sor based data, the system with an input, a memory, and a
processor in communication with the input and the memory,
the system comprising:

a weight generator module stored in the memory and
executed via the processor, the weight generator module
configured to receive a sample set including a plurality
of data samples and generate at least one sample weight
based on a contextual distance for each of the plurality of
data samples, and further to generate a class weight
based on a contextual distance for a first class of data
samples;

a scatter module stored in the memory, executed via the
processor, and in communication with the weight gen-
erator module, the scatter module configured to receive
the at least one sample weight and the class weight and
calculate a within-class scatter for a class of data
samples using the at least one sample weight, and to
calculate a between-class scatter for multiple classes of
data samples using the class weight;

an unfolding module stored in memory, executed via the
processor, and coupled with the weight generator mod-
ule and the scatter module, the unfolding module con-
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figured to perform a mode-k matrix unfolding on the
within-class scatter to generate a mode-k within-class
scatter matrix and to perform a mode-k matrix unfolding
on the between-class scatter to generate a mode-k
between-class scatter matrix; and

a projection matrix module stored in memory, executed via
the processor, and coupled with the scatter module and
the unfolding module, the projection matrix module
configured to generate at least one orthogonal projection
matrix using the mode-k within-class scatter matrix and
the mode-k between-class scatter matrix and output the
at least one orthogonal projection matrix.

10. The system of claim 9, wherein the contextual distance
for each of a plurality of samples in the sample set is calcu-
lated according to a formula:

A, Q)=NQ)-AQNL} -

11. The system of claim 10, wherein at least one sample
weight is generated using a formula:

(X, nxi)]

wi = exp(— .

12. The system of claim 11, wherein a within-class scatter
a is calculated using a formula:

a= Y win-T

s=1 X;EClass s

13. The system of claim 9, wherein the contextual distance
for a first class in the sample set is calculated according to a
formula:

d(Q,, Q=|AQ-AQRQ)|.

14. The system of claim 13, wherein a class weight w* is
generated using a formula:

2
w' = exp(— —d (Q;’ oL )

15. The system of claim 14, wherein a between-class scat-
ter P is calculated using a formula:

B= ) WP - TI.

s=1
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16. The system of claim 9, wherein at least one orthogonal
projection matrix is generated according to a formula:

g v(Uistuy)
T e T w{ursPu

17. A computer-readable storage device storing instruc-
tions executable by a computing device to enable discrimi-
nant feature extraction using tensor based data, the instruc-
tions being executable to perform a method comprising:

receiving a sample set including a plurality of data

samples;

generating at least one sample weight based on a contextual

distance for each of a plurality of data samples in the
sample set;
generating a class weight based on a contextual distance for
a first class of data samples in the sample set;

calculating a within-class scatter for a class of data samples
in the sample set, the within-class scatter calculated
using the at least one sample weight;

calculating a between-class scatter for multiple classes of

data samples in the sample set, the between-class scatter
calculated using the class weight;
performing a mode-k matrix unfolding on the within-class
scatter to generate a mode-k within-class scatter matrix;

performing a mode-k matrix unfolding on the between-
class scatter to generate a mode-k between-class scatter
matrix; and

generating at least one orthogonal projection matrix using

the mode-k within-class scatter matrix and the mode-k
between-class scatter matrix, wherein a contribution
from the mode-k between-class scatter matrix is given
more weight than a contribution from the mode-k
within-class scatter matrix; and

outputting the at least one orthogonal projection matrix.

18. The computer-readable storage device of claim 17,
wherein the within-class scatter is calculated using a formula:

a=tr(U,1S, ®U,).

19. The computer-readable storage device of claim 18,
wherein the between-class scatter is calculated using a for-
mula:

p=tr(U S, ).

20. The computer-readable storage device of claim 19,
wherein the at least one orthogonal projection matrix is gen-
erated according to a formula:

B mulsPu)
T e T WulsPu)
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