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connected to at least one other node, generating a second
spatial-contextual model to represent a second image using
the first pattern of connections, and estimating the distance
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relationship with adjacent connected nodes to determine a
distance between the first image and the second image.
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KERNELIZED SPATIAL-CONTEXTUAL
IMAGE CLASSIFICATION

BACKGROUND

Image/video classification involves categorizing a collec-
tion of unlabeled images into a set of predefined classes for
semantic level image retrieval. In some approaches, images
are modeled by segmenting the image into patches. Then, the
patches are compared to a reference image based on aspects
of'each patch, such as color, texture, etc. An additional factor
that may be considered in image classification is the spatial
context between the local patches of images. Spatial-contex-
tual models attempt to depict the spatial structures of images
in a class by constructing one common model for each image
category.

In one example, a two dimensional Hidden Markov Model
(2D HMM) may be used for image categorization, by gener-
ating a learned model from a training set of images for each
image class. Then, the learned model is used to score the
probability of an unlabeled image belonging to a certain class
of images. However, a subject image category may have a
large intra-class variance, making it is difficult to represent
various spatial contexts in different images using a single
model. For example, the images for a specific category may
differ by view, such as top view, side view, front view and
back view. Each view may have a different spatial context
related to its respective local patches. These differences may
reduce the depictive ability of a single model to capture a
large intra-class variance between images.

SUMMARY

Accordingly, various embodiments for kernelized spatial-
contextual image classification are described below in the
Detailed Description. For example, one embodiment com-
prises generating a first spatial-contextual model to represent
a first image, the first spatial-contextual model having a plu-
rality of interconnected nodes arranged in a first pattern of
connections with each node connected to at least one other
node, generating a second spatial-contextual model to repre-
sent a second image using the first pattern of connections, and
estimating the distance between corresponding nodes in the
first spatial-contextual model and the second spatial-contex-
tual model based on a relationship of adjacent connected
nodes to determine a distance between the first image and the
second image.

This Summary is provided to introduce concepts in a sim-
plified form that are further described below in the Detailed
Description. This Summary is not intended to identify key
features or essential features of the claimed subject matter,
nor is it intended to be used to limit the scope of the claimed
subject matter. Furthermore, the claimed subject matter is not
limited to implementations that solve any or all disadvantages
noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of an embodiment of a system for
kernelized spatial-contextual image classification.

FIG. 2 shows an image of a car in the perspective view with
a dependency tree hidden Markov model.

FIG. 3 shows representative nodes in the dependency tree
hidden Markov model from FIG. 2.

FIG. 4 shows a process flow depicting an embodiment of a
method for kernelized spatial-contextual image classifica-
tion.
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2
DETAILED DESCRIPTION

Generally, a prototype set of spatial-contextual models
may be constructed by leveraging a kernel method in contrast
to using only a single model for an image category in image
classification. Such an approach provides the representation
ability of spatial-contextual models as well as the classifica-
tion ability of kernel methods. For example, this approach can
generate a distance measure between different spatial-con-
textual models by integrating joint appearance-spatial image
features. Such a distance measure can be efficiently computed
in a recursive formulation that may also scale well to a range
of image sizes, and upper-bounded for the distance between
the two models can be computed.

FIG. 1 shows an example of an embodiment of a system
100 to categorize a plurality of unlabeled images comprising
a computing device 110 with an input, a memory 120, a
processor 115 in communication with the input and the
memory, and a computer program 130 in memory 120 that
may be run by processor 115.

Computing device 110 further comprises a model genera-
tion module 140 in communication with a distance module
150, and a categorization module 170. Model generation
module 140 may be configured to generate a plurality of
spatial-contextual models of images 107 from an image col-
lection 105. Distance module 150 may further include a pat-
tern service 152, and uses the pattern service 152 to recognize
nodal relationships in spatial-contextual models and calculate
an image distance 155 between spatial-contextual models.
Categorization module 170 then uses the image distance 155
to generate a categorized image 190, as described below.

In one embodiment, model generation module 140 may be
configured to generate a first Dependency Tree Hidden
Markov Model (DT-HMM) to represent a first image and a
second DT-HMM to represent a second image. Then, the
distance module 150 may to calculate an image distance 155
between the first DT-HMM and the second DT-HMM based
on formulas for different distance estimations based on a
nodal structure in corresponding nodes of the first DT-HMM
and the second DT-HMM. In this way, categorization module
170 to receive the image distance and to generate a kernelized
spatial-contextual model using the image distance.

In one embodiment, an upper-bounded distance between
two images may be obtained by a Maximum A Posteriori
(MAP) adaptation where each statistical model for an image
is adapted from a Universal Reference Model (URM). For
example, a URM may be constructed from a collection of
referential images. Therefore, once the upper-bound is
obtained, a kernel function can be generated in a kernel-based
classifier, such as Support Vector Machine (SVM), and then
used for image categorization.

As described above, a disadvantage of a conventional
2D-HMM approach is the use of a single model to represent
an image class. This can be problematic when an image class
has a large intra-class variance. Briefly turning to FIG. 2, an
image 200 of a car 215 in perspective view with a DT-HMM
structure 210 overlaying the image. However, other images of
a car may be from the front of the car, the back, the side, the
top, etc. Each of these has a different spatial-context based on
the image perspective. Ifa single model is used to represent an
image class, the intra-class variance of the different perspec-
tives would therefore generate a range of distance calcula-
tions based on different image perspectives.

In one embodiment, a set of prototype models may be
constructed, each model capturing one prototype in a subject
class. For example, for an image class of the car 215, multiple
prototype models may be constructed to represent different
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perspectives of car 215. Then, the multiple prototypes can be
combined to generate a spatial-contextual model for a car
class.

Referring back to FIG. 1, an embodiment computing
device 110 may comprise an adaptation module 160 in com-
munication with the categorization module 170, wherein the
adaptation module 160 may be configured to train a universal
reference model 165 from a plurality of representative
images. In this way, the categorization module may generate
a set of kernelized spatial-contextual models to accommodate
intra-class variance in a range of representative images con-
taining a subject semantic content.

We now describe aspects of this approach illustrated in
FIG. 1 in more detail. Given a set of training images {x,},_,”
and associated labels {y;},_,”, an individual 2D HMM
{0,},_," may be generated based on each image. By comput-
ing a similarity measure between each of these models, a
kernel functionk(®, ©,) can be calculated between two mod-
els ©, ©. Using this kernel function, a prediction function can
then be learned using a SVM approach according to the
following equation:

. M
1©= sgn{z Yiaik(®, ©;) + b}

i=1

where sgn {*} represents the sign function.

Therefore, ® and O, represent the 2D-HMM learned from
the images and a, and b provide a coefficient and bias in
equation (1). This function may be used to provide a predicted
label for an image associated with model ©. Additionally, ©,s
associated with a,;#0 may act as support vectors in a SVM
approach and may then be considered as prototypes for an
image class to discriminate the image class from the other
categories. Referring back to the car example, the images of
the car from different perspectives may be used to create a set
of support vectors that may be combined in equation (1).
Next, a similarity measure between different images based on
their respective 2D-HMM will be described.

As stated above, an individual 2D-HMM may first be used
to represent an image. In this way, a 2D-HMM is trained from
an associated image. In contrast, in a spatial-contextual
approach, a representation model (i.e., 2D-HMM) may be
separately used from a prediction model (i.e., SVM). For the
representation model, a model is fit into an image to represent
it. For the prediction model, a corresponding SVM model
may be trained based on the obtained similarities between the
fitted models. Therefore, such a framework combines the
2D-HMM ability to represent the spatial contexts of images,
as well as the prediction ability of SVM to discriminate image
classes.

We now describe a DT-HMM probabilistic modeling
approach in more detail. Similar to a 2D-HMM, in a DT-
HMM approach a 2D observation may be denoted by O={o, ,,
i=1,...,R,j=1, ..., C}, where each O, is a feature vector of
ablock (i, ]) in an image. For Q states {1, . . ., Q}, the state of
ablock (i, j) is denoted by s, .. Under the dependency assump-
tion in 2D-HMM, each state s, then depends on its two
neighbors s, s, , which in turn causes the computation
complexity of a learning procedure and an inference proce-
dure to grow considerably as image size increases. In con-
trast, in a DT-HMM approach, an assumption is made that s, ;
depends on one neighbor at a time. This neighbor may be a
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4

horizontal neighbor or a vertical neighbor, depending on a
random variable t, ; with the following distribution:

o . S on e 1 @
Pati, p=0-1,)=Pul. p=j-1)=5

Itis worth noting that for the first row or the first column of
aDT-HMM, t, ; has only one valid horizontal or vertical value
and the root node T (1, 1) is not defined. Therefore, a transi-
tion probability distribution can be simplified for vertical
transition probability distribution P, and for horizontal tran-
sition probability distribution P, respectively as:

P(Si,/"Si—l,jxsi,j—l):{PV(Sij‘Si—l,j)al(ixj):(i_l7j) and

P(s3150 15505 ) Parls1,15:1 ) E/)=(=1,7) 3

In this example, the random variables t for all (i,j) therefore
define a tree-structured dependency over all positions with
(1,1) as the root. FIG. 3 illustrates such an example depen-
dency tree structure and illustrates example nodal structures,
including node arrangement 310 with no successor node,
node arrangement 320 with a horizontal successor node, node
arrangement 330 with a vertical successor node, and node
arrangement 340 with a horizontal and a vertical successor
node. In one embodiment, these different node structures may
use a corresponding different distance calculations between
corresponding DT-HMMs, as explained in the following
paragraphs.

Ina DT-HMM, given a state s, ,, an observation o, ; may be
generated according to distribution P(o, s, ;). For example, a
Gaussian Mixture Model (GMM) may provide an observa-
tion distribution. In a multi-modal setting, the observation o, ,
may have M feature cues {o, Jk} ™ from different sources.
By assuming these M types of features can be generated
Eldependently once a corresponding state s, ; is given, we

ave:

@)

1=

P({Of-‘,j},’il |sij=a)=|| POl lsii=a

N
g /\ZJN["{'(,J' |ﬂz,1s

=1

~
I

1

—-

| )

where

M M Z

q
k.l

is a mixing coefficient, a mean vector and a covariance matrix
of Ith Gaussian component for the kth modality, respectively,
given the current state is .

For simplicity, the covariance matrix may be assumed to be
diagonal. The independence assumption holds given hidden
states are fixed, but for the 2D observation such an indepen-
dence assumption does not hold across different modalities,
ie. P(O', ... 0M=P(O') ... P(O™).

A DT-HMM may be used to encode both the appearance
and the spatial structure of an image. If a distance is computed
between DT-HMMs, an appearance-spatial discrimination
can be measured across the images. The Kullback-Leibler
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Divergence (KLD) from information theory provides a dis-
tance measure between the statistical models.

Specifically, a DT-HMM may be specified by the param-
eter set ©={m, a”, a”, h,u,X}, where x is the initial state
distribution; a®, a” is the horizontal and vertical transition
matrix ~ with am,nH:PH(si /nls,;,=m), a Y=P (s, 7
nls,_, /=m); and A,j1,3 are the parameters for the observation
distribution specified in equation (4). Using this observation
distribution, a joint distribution of the 2D observation O=
{o.f,i=1,...,R,j=1,...,C, k=1, ..., M} and state S=
{s,, =1, ..., R j=1,...,C}is:

™m

P(0,518)=P(0IS,0)P(SI0)=IL, :P(0; ls;
PAs;1852181,-1)

-©0)
®
and a 2D observation distribution can be obtained by sum-

marizing S as

PO]©)=} P0.5]0) ©
N

Therefore, the KLD between two DT-HMMs O, © is:

—(||~)—f( | O ©19)
KL =©® = | Plo|®lo
gP(0|(:))

o

Unfortunately, there is not a closed form expression for the
KLD between these two DT-HMMs, but an approximation
may be used. The approximation is motivated from the fol-
lowing lemma that is based on the log-sum inequality: Given
two mixture distributions

=~

g=

i

L
f= Zwifi and vigis
P}

the KL.D between them is upper bounded by:

L (3)
KL(fllg) < KL(wllv) + )" wiKL(fillg:)
i=1

where

L
Wi

KL(w|lv) = Z w;logv—_‘,
i=1 !

following the log-sum inequality.

Given this lemma, the KLLD between DT-HMMs can be
computed as follows. Let T(j, j) be a sub-tree rooted at posi-
tion (i,j), and B, (q) be a probability that the portion of a
respective image is covered by T(i, j) with a state q in position
(1,))- Then the 2D observation distribution is:

0 ()]
PO10) =) mB11(9)

g=1
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6
Accordingly, the KLLD between two DT-HMMs may be
calculated according to:

10

Q2
> 7By (@ = KLl +
=1

0
KL(©[6) = KL[Z 7gPLi(g)

g=1

Q
> A KLBL @B @)

g=1

The term KL(p 1,1(q)||[§ 1,1(q) from the right-hand side of
equation (10), may be computed recursively. For example, the
term may be computed based on an extension of Baum-Welch
algorithm by considering the following cases, where each
case corresponds to one of the node arrangements depicted in
FIG. 3:

In reference to node arrangement 310, if (i,j) is aleafin T(4,
j) thathas no child node, the term may be calculated according
to:

ﬁij(q):P(Oij‘Sij:q) an

_ For notation purposes, N(o, Jklpk,lq,Zk,Zq), and N(o, Jkl ﬂ.k,lq,
2, ;/)may be denoted by N, JK and N, JK , respectively. Next, by
substituting equation (4) into the above equation (11), the

KLD can be computed as:

Y 12)
k,lNk,l

1=

I

k=1t

1=

KL(B: /(|| /@) = KL[]_[

k=1

M N
SefS

=1

q q
Ak,lNk,l

N

3q ~49
Z/Ik,lNk,l =
=1

M N
SUKLALIAL )+ > AL KLINEINE )
=1

where

N Aq
= k!
KLQY A7 ) = § Az,llogiT-
1 el

Here, the second equality follows the chain rule for KL.D and
the inequality comes from the lemma.

In reference to node arrangement 320, if (i,j) has only a
horizontal successor, we have the following recursive equa-
tion:

o (13)
Bij(@) =Ploijlsi;= Q)Z @l Bild)
q=1
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thus we have:

KL(ﬁi,j(Q)llﬁ;,j(q)) = KL[P(o; ;|5 = g, ®O)|Pos ;|5 = g. ©)) + 14

2 0
KL[Z oty BN B (q’)] <
q'=1

q'=1

M
Z {KL /1‘7 ||/1k

P =1

N
Z AZ,IKL(NZ,[”NZJ)} +
KL 1 ) + Z ol KL(B; jur (@B, 111 (2)

Where

2 o

~ £
Kl af ) = E q,logi
£

=1 q,

accounts for discrimination information of the horizontal spa-
tial structure between the respective two images. In this
example, the first equality follows the chain rule for KLLD and
the inequality comes from the lemma.

Similarly, and in reference to node arrangement 330, if (i,j)
has only a vertical successor, we have:

B M N ~ (15)
KL, @B, @) = Y AKLOL IR )+ DAL KLINIINE D)+
k=1 =1

KL@!, |1, )+Za o KLB J @By J))

In similar fashion to the previous example,

[ 0“/1
KL(aY |13} ) = E w;,log@iv'l
G

=1

accounts for the discrimination of the vertical spatial struc-
ture between the two images.

Referring now to node arrangement 340, if (i,j) has both a
horizontal and a vertical successor, we have:

2 g (16
Bij@=Ploijlsi;j=aq 9)'[2 wgq/ﬁi,jﬂ(q/)]'[z %‘;q’ﬁiﬂ,j(q/)]

g'=1 q'=1
resulting in:

KL(B; jlIB; (@) = KL{Plo; ;| 51, = g, OIP(0;; | 51,5 = g. ©)) + an

2 0
KL[Z oty BN B (q’)] <
q'=1

q'=1
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-continued

N
Z AZ,IKL(NZ,[”NZJ)} +

=1

M

O frattit )

k=1

KL |16 )+Za 7 KL(Bi 1 @B, 11 (@) +

g'=1

KL} &Y, )+Za o KLBiet J@ N By JD))

g'=1

Note that, since a DT-HMM has a tree structure, two sub
trees T(i+1,j) and T(i,j+1) may have no common nodes.
Therefore the two distributions

Q Q
[Z w:q/ﬁi,jﬂ(q/)] and [Z b, ﬁi+1,j(q/)]
g'=1 g'=1

may be independent, thus in the first equality we can apply the
chain rule for KLD.

Finally, the KL.LD between the two d-dimensional normal
distributions Nk,lq,Nqu in the above equations has a closed-
from expression as shown in the following formula:

= ( o (18)
5 1 log—— + T¥ (Zk ,) Z
KLIN W) = 5 el
~ &g -1 ~
W, —E )T ELY Wl -y -d

Referring now to FIG. 4, a process flow depicting an
embodiment of a method 400 for categorizing a plurality of
unlabeled images is shown. First, as indicated in block 410,
method 400 comprises generating a first spatial-contextual
model to represent a first image, the first spatial-contextual
model having a plurality of interconnected nodes arranged in
a first pattern of connections with each node connected to at
least one other node. In one example, a spatial-contextual
model may be a Dependency Tree Hidden Markov Model
(DT-HMM).

Method 400 also comprises generating a second spatial-
contextual model to represent a second image, the second
spatial-contextual model having a plurality of interconnected
nodes arranged in the first pattern of connections, as indicated
in block 420.

Next, method 400 comprises determining a relationship of
adjacent nodes that each node is connected with in the first
pattern of connections, as indicated at 430. Then, as depicted
in block 440, method 400 comprises calculating a distance
between corresponding nodes in the first spatial-contextual
model and the second spatial-contextual model based on the
relationship of adjacent connected nodes to determine a dis-
tance between the first image and the second image.

In some embodiments, method 400 may further comprise
training a Universal Reference Model from a plurality of
referential images, and adapting the first spatial-contextual
model and the second spatial-contextual model to the Univer-
sal Reference Model prior to calculate a distance between
corresponding nodes. In one embodiment, calculating a dis-
tance between corresponding nodes involves estimating the
distance using an upper-bounded Kullback-Leibler Diver-
gence based on the relationship of adjacent nodes.
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It will be appreciated that the embodiments described
herein may be implemented, for example, via computer-ex-
ecutable instructions or code, such as programs, stored on a
computer-readable storage medium and executed by a com-
puting device. Generally, a program involves routines,
objects, components, or data structures, and the like that
perform particular tasks or implement particular abstract data
types. As used herein, the term “program” may connote a
single program or multiple programs acting in concert, and
may be used to denote applications, services, or any other
type or class of program. Likewise, the terms “computer” and
“computing device” as used herein include any device that
electronically executes one or more programs, including, but
not limited to, personal computers, servers, laptop computers,
hand-held devices, cellular phones, microprocessor-based
programmable consumer electronics and other computer
image processing devices.

It will further be understood that the configurations and/or
approaches described herein are exemplary in nature, and that
these specific embodiments or examples are not to be consid-
ered in a limiting sense, because numerous variations are
possible. The specific routines or methods described herein
may represent one or more of any number of processing
strategies. As such, various acts illustrated may be performed
in the sequence illustrated, in other sequences, in parallel, or
in some cases omitted. Likewise, the order of any of the
above-described processes is not necessarily required to
achieve the features and/or results of the embodiments
described herein, but is provided for ease of illustration and
description.

The subject matter of the present disclosure includes all
novel and nonobvious combinations and subcombinations of
the various processes, systems and configurations, and other
features, functions, acts, and/or properties disclosed herein,
as well as any and all equivalents thereof.

The invention claimed is:

1. A method for categorizing a plurality of unlabeled
images, the method comprising:

on a computing device:

generating a first spatial-contextual model to represent a
first image, the first spatial-contextual model having a
plurality of interconnected nodes arranged in a first
pattern of connections with each node connected to at
least one other node;

generating a second spatial-contextual model to repre-
sent a second image, the second spatial-contextual
model having a plurality of interconnected nodes
arranged in the first pattern of connections;

determining a relationship of adjacent nodes that each
node is connected with in the first pattern of connec-
tions; and

calculating a distance between corresponding nodes in
the first spatial-contextual model and the second spa-
tial-contextual model based on the relationship of
adjacent connected nodes to determine a distance
between the first image and the second image.

2. The method of claim 1, wherein calculating a distance
between corresponding nodes involves estimating the dis-
tance using an upper-bounded Kullback-[ eibler Divergence
based on the relationship of adjacent nodes.

3. The method of claim 1, wherein the first spatial-contex-
tual model and the second spatial-contextual model are each
a Dependency Tree Hidden Markov Model (DT-HMM).
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4. The method of claim 2, wherein the upper-bounded
Kullback-Leibler Divergence is calculated using a formula:

KL(0]|®) =

2 4
KL[Z mua @ 2B (@
=

g=1

Q2
< KL + Y 7, KL{B1L1@lIB, @)
g=1

5. The method of claim 4, further comprising:

training a Universal Reference Model from a plurality of

referential images; and

adapting the first spatial-contextual model and the second

spatial-contextual model to the Universal Reference
Model prior to calculating a distance between corre-
sponding nodes.

6. The method of claim 4, wherein if each of the corre-
sponding nodes are not connected with a successor node, the
method further comprises calculating the upper-bounded
Kullback-Leibler Divergence using a formula:

N

M N M
KL(B: {@IIB; /(@) = KL[]_[ Z AN ] DM

k=1 =1 k=1 {=1

M N N
= g KL[ g /\ZJNI?,MZ NG
=1 = =1
M N
q 1139 q q Yol
g {KL(/\/(,.H/\/(,_) + Z /\k,lKL(NkJHNk,l)}-

= =1

=

7. The method of claim 4, wherein if each of the corre-
sponding nodes are connected with a vertical successor node,
the method further comprises calculating the upper-bounded
Kullback-Leibler Divergence using a formula:

M N
KLB: {@IIB, () = Z {KL(AZ,_HXZ,_) > AZ,,KL(N;’,,HNZ,,)} +
=1

k=1
Q ~
KLy llay)+ > o o KLBiv, @ NBisy, @)
q'=1

8. The method of claim 4, wherein if each of the corre-
sponding nodes are connected with a horizontal successor
node, the method further comprises calculating the upper-
bounded Kullback-Leibler Divergence using a formula:

KL(B: j@|B; (@) = KL(P(os | 517 = g, ONIP(0i ;| 51 = g, ©)) +

Q

Q
KLYl B @O 8|
q’'=1

q'=1

M N
Z{m(xz,_uiz,_)+2xz,,z<L(Nz,|wz,,)}+

=1 =1

Qo
KL Ilal)+ > ot KL(By ju1 @B, 1 @)
q'=1



US 8,131,086 B2

11

9. The method of claim 4, wherein if each of the corre-
sponding nodes are connected with a vertical successor node
and a horizontal successor node, the method further com-
prises calculating the upper-bounded Kullback-Leibler
Divergence using a formula:

KL(B, j@|B; (@) = KL(P(o; ;| 51 = . ONIP(0; | 5:j = g, O)) +

2 0
KL[Z all /B i@l Y B s (q’)] =
q'=1

q'=1

M

N
> {u(xz,_uiz,_)+zxz,,u(wz,|wz,,>}+
=1

k=1

KiL(a!! 1! )+Za KL(B: 1 @B, 1 () +

KLY |, )+Za o KL(Bir j @ By (@)

g'=1

10. A computer-readable storage medium comprising
stored instructions executable by a computing device to cat-
egorize a plurality of unlabeled images, the stored instruc-
tions executed by the computing device to perform a method
comprising:

generating a first spatial-contextual model to represent a

first image, the first spatial-contextual model having a
plurality of interconnected nodes arranged in a first pat-
tern of connections with each node connected to at least
one other node;

generating a second spatial-contextual model to represent a

second image, the second spatial-contextual model hav-
ing a plurality of interconnected nodes arranged in the
first pattern of connections;

training a Universal Reference Model from a plurality of

referential images;
adapting the first spatial-contextual model and the second
spatial-contextual model to the Universal Reference
Model;

determining a relationship of adjacent nodes that each node
is connected with in the first pattern of connections; and

calculating a distance between corresponding nodes in the
first spatial-contextual model and the second spatial-
contextual model based on the relationship of adjacent
connected nodes.

11. The computer-readable storage medium of claim 10,
wherein adapting the first spatial-contextual model and the
second spatial-contextual model to the Universal Reference
Model comprises a Maximum A Posteriori technique.

12. The computer-readable storage medium of claim 10,
wherein calculating a distance between corresponding nodes
involves estimating the distance using an upper-bounded
Kullback-Leibler Divergence based on the relationship of
adjacent nodes.

13. The computer-readable storage medium of claim 10,
wherein the first spatial-contextual model and the second
spatial-contextual model are each a Dependency Tree Hidden
Markov Model (DT-HMM).

14. The computer-readable storage medium of claim 12,
wherein the upper-bounded Kullback-Leibler Divergence is
calculated using a formula:
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KL(0]|®) =

2 2
KL[Z %BLI@IY %Py, @
g=1

g=1

Q2
< KL + ) 7 KL{BLi@lIB, @)
g=1

15. The computer-readable storage medium of claim 14,
wherein if each of the corresponding nodes are not connected
with a successor node, the medium further comprises instruc-
tions for calculating the upper-bounded Kullback-Leibler
Divergence using a formula:

M N
[ %

k=1 =1

KL(B (B, (@) = L[]_[ Z AN

=1

N
= E L[ E AZ,INI?J”ZXZ,INZ,I =
=1 [ =1

M

Z{KL(/V 137)

k=1

Z A7 1KL N AN 1)}

=1

16. The computer-readable storage medium of claim 14,
wherein if each of the corresponding nodes are connected
with a horizontal successor node, the medium further com-
prises instructions for calculating the upper-bounded Kull-
back-Leibler Divergence using a formula:

KL(B, j@|B; (@) = KL(P(0; ;| 51 = . ONIP(0; ;| 5i; = g, ©)) +

g 0
KL[Z %’;,q/ Bij+1 ([1/)”2 @Zq/ ﬁ;,jﬂ ([1/)] =
q'=1

q'=1

i{m@zm,_)

k=1

N
+ > ALKLN, ,||1\”/Z,,)} +

=1

KL |16 )+Za o KL(B: i1 @B, 111 @)

g'=1

17. The computer-readable storage medium of claim 13,
wherein if each of the corresponding nodes are connected
with a vertical successor node, the medium further comprises
instructions for calculating the upper-bounded Kullback-
Leibler Divergence using a formula:

M

KL{B: /@B, (@) = Z{KM" IAZ.) ZAZ,KLNHHN“}

k=1

KL@!, |1, )+Za 7 KLB: i1 @B, 111 @)

g'=1
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18. The computer-readable storage medium of claim 13,
wherein if each of the corresponding nodes are connected
with a vertical successor node and a horizontal successor
node, the medium further comprises instructions for calcu-
lating the upper-bounded Kullback-Leibler Divergence using
a formula:

KL(B, j@|B; (@) = KL(P(o; ;| 51 = . ONIP(0; | 5:j = g, O)) +

Qo
Qo
K g all/Bjr@l Yy &8 B @) | =
q'=1

q'=1

M

N
D {u(xz,_uzz,_) : zxz,,u(wz,uwz,,)} ,
=1

k=1

Q2
K@)+ > ol KB, jat@ NIB, () +
q'=1

Q2
KL@y lay )+ " ab o KL{Bis @ NBiyy, (@)
q'=1

20

25

14

19. A system to categorize a plurality of unlabeled images,
the system comprising:

an input;

a memory including stored instructions; and

a processor in communication with the input and the

memory, the processor being configured to executed the

stored instructions to implement:

amodel generation module configured to generate a first
dependency tree hidden Markov model to represent a
first image, the model generation module further con-
figured to generate a second dependency tree hidden
Markov model to represent a second image;

a distance module in communication with the model
generation module, the distance module configured to
calculate an image distance between the first depen-
dency tree hidden Markov model and the second
dependency tree hidden Markov model; and

a categorization module to receive the image distance
and to generate a kernelized spatial-contextual model
using the image distance.

20. The system of claim 19, further comprising an adapta-
tion module in communication with the categorization mod-
ule, the adaptation module being configured to train a univer-
sal reference model from a plurality of representative images
and the categorization module being further configured to
generate a set of kernelized spatial-contextual models.

#* #* #* #* #*



